阅读更多

3顶
0踩

编程语言

转载新闻 很酷的C语言技巧

2015-03-12 15:12 by 副主编 mengyidan1988 评论(2) 有8018人浏览
C语言常常让人觉得它所能表达的东西非常有限。它不具有类似第一级函数和模式匹配这样的高级功能。但是C非常简单,并且仍然有一些非常有用的语法技巧和功能,只是没有多少人知道罢了。

指定的初始化

很多人都知道像这样来静态地初始化数组:
int fibs[] = {1, 1, 2, 3, 5};

C99标准实际上支持一种更为直观简单的方式来初始化各种不同的集合类数据(如:结构体,联合体和数组)。

数组

我们可以指定数组的元素来进行初始化。这非常有用,特别是当我们需要根据一组#define来保持某种映射关系的同步更新时。来看看一组错误码的定义,如:
/* Entries may not correspond to actual numbers. Some entries omitted. */
#define EINVAL 1
#define ENOMEM 2
#define EFAULT 3
/* ... */
#define E2BIG  7
#define EBUSY  8
/* ... */
#define ECHILD 12
/* ... */


现在,假设我们想为每个错误码提供一个错误描述的字符串。为了确保数组保持了最新的定义,无论头文件做了任何修改或增补,我们都可以用这个数组指定的语法。
char *err_strings[] = {
         [0] = "Success",
    [EINVAL] = "Invalid argument",
    [ENOMEM] = "Not enough memory",
    [EFAULT] = "Bad address",
    /* ... */
    [E2BIG ] = "Argument list too long",
    [EBUSY ] = "Device or resource busy",
    /* ... */
    [ECHILD] = "No child processes"
    /* ... */
};

这样就可以静态分配足够的空间,且保证最大的索引是合法的,同时将特殊的索引初始化为指定的值,并将剩下的索引初始化为0。



结构体与联合体

用结构体与联合体的字段名称来初始化数据是非常有用的。假设我们定义:
struct point {
    int x;
    int y;
    int z;
}

然后我们这样初始化struct point:
struct point p = {.x = 3, .y = 4, .z = 5};

当我们不想将所有字段都初始化为0时,这种作法可以很容易的在编译时就生成结构体,而不需要专门调用一个初始化函数。

对联合体来说,我们可以使用相同的办法,只是我们只用初始化一个字段。
宏列表

C中的一个惯用方法,是说有一个已命名的实体列表,需要为它们中的每一个建立函数,将它们中的每一个初始化,并在不同的代码模块中扩展它们的名字。这在Mozilla的源码中经常用到,我就是在那时学到这个技巧的。例如,在我去年夏天工作的那个项目中,我们有一个针对每个命令进行标记的宏列表。其工作方式如下:
#define FLAG_LIST(_)                   \
    _(InWorklist)                      \
    _(EmittedAtUses)                   \
    _(LoopInvariant)                   \
    _(Commutative)                     \
    _(Movable)                         \
    _(Lowered)                         \
    _(Guard)

它定义了一个FLAG_LIST宏,这个宏有一个参数称之为 _ ,这个参数本身是一个宏,它能够调用列表中的每个参数。举一个实际使用的例子可能更能直观地说明问题。假设我们定义了一个宏DEFINE_FLAG,如:
#define DEFINE_FLAG(flag) flag,
   enum Flag {
       None = 0,
       FLAG_LIST(DEFINE_FLAG)
       Total
   };
#undef DEFINE_FLAG

对FLAG_LIST(DEFINE_FLAG)做扩展能够得到如下代码:
enum Flag {
        None = 0,
        DEFINE_FLAG(InWorklist)
        DEFINE_FLAG(EmittedAtUses)
        DEFINE_FLAG(LoopInvariant)
        DEFINE_FLAG(Commutative)
        DEFINE_FLAG(Movable)
        DEFINE_FLAG(Lowered)
        DEFINE_FLAG(Guard)
        Total
    };

接着,对每个参数都扩展DEFINE_FLAG宏,这样我们就得到了enum如下:
enum Flag {
        None = 0,
        InWorklist,
        EmittedAtUses,
        LoopInvariant,
        Commutative,
        Movable,
        Lowered,
        Guard,
        Total
    };

接着,我们可能要定义一些访问函数,这样才能更好的使用flag列表:
#define FLAG_ACCESSOR(flag) \
bool is##flag() const {\
    return hasFlags(1 << flag);\
}\
void set##flag() {\
    JS_ASSERT(!hasFlags(1 << flag));\
    setFlags(1 << flag);\
}\
void setNot##flag() {\
    JS_ASSERT(hasFlags(1 << flag));\
    removeFlags(1 << flag);\
}
 
FLAG_LIST(FLAG_ACCESSOR)
#undef FLAG_ACCESSOR

一步步的展示其过程是非常有启发性的,如果对它的使用还有不解,可以花一些时间在gcc –E上。

编译时断言

这其实是使用C语言的宏来实现的非常有“创意”的一个功能。有些时候,特别是在进行内核编程时,在编译时就能够进行条件检查的断言,而不是在运行时进行,这非常有用。不幸的是,C99标准还不支持任何编译时的断言。

但是,我们可以利用预处理来生成代码,这些代码只有在某些条件成立时才会通过编译(最好是那种不做实际功能的命令)。有各种各样不同的方式都可以做到这一点,通常都是建立一个大小为负的数组或结构体。最常用的方式如下:
/* Force a compilation error if condition is false, but also produce a result
 * (of value 0 and type size_t), so it can be used e.g. in a structure
 * initializer (or wherever else comma expressions aren't permitted). */
/* Linux calls these BUILD_BUG_ON_ZERO/_NULL, which is rather misleading. */
#define STATIC_ZERO_ASSERT(condition) (sizeof(struct { int:-!(condition); })    )
#define STATIC_NULL_ASSERT(condition) ((void *)STATIC_ZERO_ASSERT(condition)    )
 
/* Force a compilation error if condition is false */
#define STATIC_ASSERT(condition) ((void)STATIC_ZERO_ASSERT(condition))

如果(condition)计算结果为一个非零值(即C中的真值),即! (condition)为零值,那么代码将能顺利地编译,并生成一个大小为零的结构体。如果(condition)结果为0(在C真为假),那么在试图生成一个负大小的结构体时,就会产生编译错误。

它的使用非常简单,如果任何某假设条件能够静态地检查,那么它就可以在编译时断言。例如,在上面提到的标志列表中,标志集合的类型为uint32_t,所以,我们可以做以下断言:
STATIC_ASSERT(Total <= 32)

它扩展为:
(void)sizeof(struct { int:-!(Total <= 32) })

现在,假设Total<=32。那么-!(Total <= 32)等于0,所以这行代码相当于:
(void)sizeof(struct { int: 0 })

这是一个合法的C代码。现在假设标志不止32个,那么-!(Total <= 32)等于-1,所以这时代码就相当于:
(void)sizeof(struct { int: -1 } )

因为位宽为负,所以可以确定,如果标志的数量超过了我们指派的空间,那么编译将会失败。

英文出处:endofunctor
本文由 伯乐在线 - Michael.X 翻译
  • 大小: 78.6 KB
来自: 伯乐在线
3
0
评论 共 2 条 请登录后发表评论
2 楼 xmind 2015-05-14 15:51
assert.c: In function ‘main’:
assert.c:18: error: ‘uint32_t’ undeclared (first use in this function)
assert.c:18: error: (Each undeclared identifier is reported only once
assert.c:18: error: for each function it appears in.)
assert.c:18: error: expected ‘;’ before ‘Total’
assert.c:19: error: ‘Total’ undeclared (first use in this function)
assert.c:19: error: bit-field ‘<anonymous>’ width not an integer constant
1 楼 xmind 2015-05-14 15:51
编译时断言 应该怎么写啊?

/* Force a compilation error if condition is false, but also produce a result
 *  * (of value 0 and type size_t), so it can be used e.g. in a structure
 *   * initializer (or wherever else comma expressions aren't permitted). */
/* Linux calls these BUILD_BUG_ON_ZERO/_NULL, which is rather misleading. */
#define STATIC_ZERO_ASSERT(condition) (sizeof(struct { int:-!(condition); })    )
#define STATIC_NULL_ASSERT(condition) ((void *)STATIC_ZERO_ASSERT(condition)    )
 
/* Force a compilation error if condition is false */
#define STATIC_ASSERT(condition) ((void)STATIC_ZERO_ASSERT(condition))

void main(void) {

//(void)sizeof(struct { int:-1; });
uint32_t Total = 333;
STATIC_ASSERT(Total <= 32);

}

发表评论

您还没有登录,请您登录后再发表评论

相关推荐

  • 超级炫酷的C语言技巧!

    但是C非常简单,并且仍然有一些非常有用的语法技巧和功能,只是没有多少人知道罢了。一、指定的初始化很多人都知道像这样来静态地初始化数组:int fibs[] = {1, 1, 2, 3, 5};C99标准实际上支持一种更为直观简单的...

  • C99中很酷的C语言技巧

    C语言常常让人觉得它所能表达的东西非常有限。它不具有类似第一级函数和模式匹配这样的高级功能。但是C非常简单,并且仍然有一些非常有用的语法技巧和功能,只是没有多少人知道罢了。 指定的初始化 很多人都...

  • c语言里的fn,很酷的C语言技巧 - fnnn99 - OSCHINA - 中文开源技术交流社区

    C语言常常让人觉得它所能表达的东西非常有限。它不具有类似第一级函数和模式匹配这样的高级功能。但是C非常简单,并且仍然有一些非常有用的语法技巧和功能,只是没有多少人知道罢了。指定的初始化很多人都知道像这样...

  • 超炫酷技巧!C语言代码优化的技巧

    有些处理器处理无符号unsigned 整形数的效率远远高于有符号signed整形数(这是一种很好的做法,也有利于代码具体类型的自解释)。 因此,在一个紧密循环中,声明一个int整形变量的最好方法是: ...

  • 天然气汽车供气系统减压装置毕业设计(cad+设计方案).zip

    天然气汽车供气系统减压装置毕业设计(cad+设计方案)

  • PHP+SQL考勤系统安全性实现(源代码+论文+答辩PPT+指导书)

    PHP+SQL考勤系统安全性实现(源代码+论文+答辩PPT+指导书)

  • NumPy 的用途是什么

    NumPy 的用途是什么

  • 毕业设计 基于javaweb的在线答题平台

    毕业设计 基于javaweb的在线答题平台

  • 基于MATLAB的pca人脸识别.zip

    基于MATLAB的pca人脸识别.zip

  • 课设毕设基于SSM的信息类课程教学知识管理系统LW+源码可运行.zip

    课设毕设基于SSM的系统源码可运行

  • JAVAWML信息查询与后端信息发布系统实现-WML信息查询设计(源代码+LW).zip

    JAVAWML信息查询与后端信息发布系统实现——WML信息查询设计(源代码+LW)

  • 毕业设计[整站程序]情感家园站 v3.0 For 个人版_qgweb30fp.zip

    毕业设计[整站程序]情感家园站 v3.0 For 个人版_qgweb30fp.zip

  • 熊猫脚本助手V1.8.zip

    可以自动刷课,执行重复的脚本工作,内有详细操作教程。支持WIN7---WIN10系统。

  • Java项目之实验室计算机故障报修系统(源码)

    Java项目之实验室计算机故障报修系统(源码) 开发语言:Java 框架:ssm 技术:JSP JDK版本:JDK1.8 服务器:tomcat7 数据库:mysql 5.7(一定要5.7版本) 数据库工具:Navicat11 开发软件:eclipse/myeclipse/idea Maven包:Maven3.3.9

  • 使用hapi框架搭建 基于协同过滤的美食推荐系统——后台.zip

    协同过滤算法(Collaborative Filtering)是一种经典的推荐算法,其基本原理是“协同大家的反馈、评价和意见,一起对海量的信息进行过滤,从中筛选出用户可能感兴趣的信息”。它主要依赖于用户和物品之间的行为关系进行推荐。 协同过滤算法主要分为两类: 基于物品的协同过滤算法:给用户推荐与他之前喜欢的物品相似的物品。 基于用户的协同过滤算法:给用户推荐与他兴趣相似的用户喜欢的物品。 协同过滤算法的优点包括: 无需事先对商品或用户进行分类或标注,适用于各种类型的数据。 算法简单易懂,容易实现和部署。 推荐结果准确性较高,能够为用户提供个性化的推荐服务。 然而,协同过滤算法也存在一些缺点: 对数据量和数据质量要求较高,需要大量的历史数据和较高的数据质量。 容易受到“冷启动”问题的影响,即对新用户或新商品的推荐效果较差。 存在“同质化”问题,即推荐结果容易出现重复或相似的情况。 协同过滤算法在多个场景中有广泛的应用,如电商推荐系统、社交网络推荐和视频推荐系统等。在这些场景中,协同过滤算法可以根据用户的历史行为数据,推荐与用户兴趣相似的商品、用户或内容,从而提高用户的购买转化率、活跃度和社交体验。 未来,协同过滤算法的发展方向可能是结合其他推荐算法形成混合推荐系统,以充分发挥各算法的优势。

  • JAVAWEB校园二手平台项目.zip

    JAVAWEB校园二手平台项目,基本功能包括:个人信息、商品管理;交易商品板块管理等。本系统结构如下: (1)本月推荐交易板块: 电脑及配件:实现对该类商品的查询、用户留言功能 通讯器材:实现对该类商品的查询、用户留言功能 视听设备:实现对该类商品的查询、用户留言功能 书籍报刊:实现对该类商品的查询、用户留言功能 生活服务:实现对该类商品的查询、用户留言功能 房屋信息:实现对该类商品的查询、用户留言功能 交通工具:实现对该类商品的查询、用户留言功能 其他商品:实现对该类商品的查询、用户留言功能 (2)载入个人用户: 用户登陆 用户注册 (3)个人平台: 信息管理:实现对商品的删除、修改、查询功能 添加二手信息:实现对新商品的添加 修改个人资料:实现对用户个人信息的修改 注销

  • 基于协同过滤和SVD算法的音乐推荐系统.zip

    协同过滤算法(Collaborative Filtering)是一种经典的推荐算法,其基本原理是“协同大家的反馈、评价和意见,一起对海量的信息进行过滤,从中筛选出用户可能感兴趣的信息”。它主要依赖于用户和物品之间的行为关系进行推荐。 协同过滤算法主要分为两类: 基于物品的协同过滤算法:给用户推荐与他之前喜欢的物品相似的物品。 基于用户的协同过滤算法:给用户推荐与他兴趣相似的用户喜欢的物品。 协同过滤算法的优点包括: 无需事先对商品或用户进行分类或标注,适用于各种类型的数据。 算法简单易懂,容易实现和部署。 推荐结果准确性较高,能够为用户提供个性化的推荐服务。 然而,协同过滤算法也存在一些缺点: 对数据量和数据质量要求较高,需要大量的历史数据和较高的数据质量。 容易受到“冷启动”问题的影响,即对新用户或新商品的推荐效果较差。 存在“同质化”问题,即推荐结果容易出现重复或相似的情况。 协同过滤算法在多个场景中有广泛的应用,如电商推荐系统、社交网络推荐和视频推荐系统等。在这些场景中,协同过滤算法可以根据用户的历史行为数据,推荐与用户兴趣相似的商品、用户或内容,从而提高用户的购买转化率、活跃度和社交体验。 未来,协同过滤算法的发展方向可能是结合其他推荐算法形成混合推荐系统,以充分发挥各算法的优势。

  • Java游戏设计打飞机程序(源代码+LW).zip

    Java游戏设计打飞机程序(源代码+LW)

  • Matlab实现CoMP多用户注水算法在最最基础的注水算法的基础上,

    Matlab实现CoMP多用户注水算法在最最基础的注水算法的基础上,实现了在功率受限速率受限的情况下CoMP多用户的功率分配.zip

Global site tag (gtag.js) - Google Analytics